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Abstract—The paper numerically analyses the necking of a cylindrical, elastic-plastic, strain-hardening bar
in axisymmetric tension. Both geometric and material nonlinearities are taken into account. The Lagranglan
formulation is used. The solution is obtained by a stepwise integration of the equilibrium equations, using
the finite difference method. The results also include stress and strain distributions across the minimum bar
‘section at various deformation stages up to 67% reduction of the bar’s area. Comparisons with the results of
previous investigators (Bridgman, Chen, Needleman, Norris) are also given.

1. INTRODUCTION

Since 1944, when Bridgman first determined the distribution of stresses in the narrowest section
of the necked cylindrical bar in tension, there have been many other investigators of the
problem, e.g. Davidenkov and Spiridonova[1), Parker et al.[2], Truszkowski and Jasieriski[3],
Thomason[4], Chen[5], Needleman[6], Norris et al.[7], all using different methods and all
coming to more or less different results. The present analysis, again coming to new results, is
hoped to contribute to the final solution of the problem.

The results are obtained by numerical integration of the equilibrium equations. The finite
difference method is used. The nonlinear algebraic system of equations for nodal displacement
increments, arising from a finite difference discretization, is solved iteratively. The comparison
between the present and previous results is given for estimation and discussion.

2. BASICEQUATIONS AND METHOD OF SOLUTION
Equilibrium equations
The equilibrium equations have the following nonlinear form when the Lagrangian descrip-
tion is used[8]

Vo [SEG™+am)l+fm=0 (1a)
So: 55‘(61’" + limll)nko—p-om =0 (lb)
mk1=1,23)

Vi is the volume of the undeformed body bounded by the surface Sp; ““|i” means the covariant
differentiation in the undeformed body with respect to the material coordinates 6,%; §&
symmetrical Kirchhoff stress tensor; #™ contravariant component of the displacement vector;
8,™ Kronecker’s symbol; n,° covariant component of the unit normal to the undeformed surface
So; f™ contravariant component of the volume force vector, and Po™ is the contravariant
component of the surface traction per unit of the undeformed area. The base vectors and
covariant components of the metric tensor in the undeformed body are denoted by g and g;
G,j=1,2,3).

If a constitutive law is used the equations can be put into a form where the displacements
are principal unknowns. For this purpose the decomposition of the components of stresses,
displacements and forces is made:

58 = sk + Ask (2a)
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i = u* + Au* (2b)
Po* =po* +Ape* (2c)
fé=fr+ Af* (2d)

where s& and u* are known and correspond to forces po* and f* while As§ and Au* are
unknown increments, corresponding to Apo* and AfX. As{ is then expressed with the displace-
ment increments using the constitutive law for elastic-plastic materials

Ask = CAy,, 3)

where
1 n n n n 1 n
A'Ypr = '2' [(8,, +u Ip)Aunlr + (8r +u lr)Aunlp] + i Auneru Ip (4)

is the Lagrangian strain tensor increment and C§*" the constitutive tensor depending on strains

and stresses. The constitutive equations will be discussed later. Using (2)-(4) in (1), the
following set of equations is obtained:

Vor (K™ Aun|,)i + B CEP7(8,™ + u™ A", Attn], T + [sE(E™ + u™ )W + " =0 (5a)

So: K*'"'"Au..lmk°+% CE (8™ + u™|)Au"|, Auy | + s§'(8™ + u™|)n ~ jo™ =0 (5b)
K¥™ = s§7g™ + CEP (8™ + u™ | )(8," + u"],). ®

These are nonlinear differential equations for unknown displacement increments Au;; when
solved, the displacements can easily be obtained:

Um = Uy, + Al )]

This makes it possible to compute the Lagrangian strain tensor components, using the formula
S _ | e
Yor = i(upIr + ur,p + unlpu ,r) (8)

the covariant and contravariant components of the deformed metric tensor, using the relations

Gpr = 2%pr + 8pr (9a)
G,nG" =8, (9b)

and the Kirchhoff stresses 5§, using eqns (2a) and (3).
The physical (Cauchy) components of the true stresses are determined by the relation

o= (%) N (f’,&) S (5, + w08/ + )58 (10)

where g and G are the determinants of the undeformed and deformed metric tensors g; and Gj.
Following the finite difference method, the integration region is divided into a rectangular
net and the differential equations (5a,b) are written in finite difference form at corresponding
nodes. The resulting system of nonlinear algebraic equations for unknown nodal displacement
increments AU,y (the index M indicates the M-th node and goes from 1 to the total number of
nodes) is solved iteratively by subsequently solving the linearized systems of equations (5)

Vo DUK*™ Au,| )} =~ D{[s&(&:™ + u™ [ + ™} (11a)
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So: D{(K*™ Aun| 0@ = — D{s¥(8,™ + u™|)nd ~ po™ ¥ (11b)
(«=0,1,2,3,...)

AU = AUSK (11¢)

where “D” and (a) designate that the expression is written in the finite difference form and
computed at the known values of the a-th iteration. The terms on the right-hand sides of eqns
(11a),(b) are equal to those on the left-hand sides of eqns (1a),(b). For this reason, the solution
approaches the equilibrium state, if they approach zero. This is tested by computing norm of
the r.h.s. of (11a),(b) after each iteration, and when it is smaller than an arbitrary small value, the
iteration is interrupted. Nodal displacements, strains and stresses at the loads jo™ and f™ are
then computed. We also tested the norms of the AU}, vectors and found that they were
usually less decisive.

We use the usual (h?) difference operators. Symmetric operators are used in the interior
points and nonsymmetric at the boundary. The actual finite difference scheme of eqn (11a) for
m=1 and m =3, applied at axisymmetric stress and strain state and with cylindrical coor-
dinates used, is given in the Appendix.

Constitutive equations

The present analysis employs the constitutive equations, which were derived in[9}; only an
abstract of that paper is given here. The theory of general elastic-plastic materials at finite
strains, similar to that of Green and Naghdi (1965), is derived first. Next, the relation between
the stress rate §§ and the strain rate d;, which depends on four experimentally determined
tensor functions, is deduced. For the purpose of the present analysis these functions are chosen
" in such a way that within the supposition of material incompressibility the constitutive
equations reduce to the known equations of the generalized Prandtl-Reuss (or #,) flow theory
with Mises yield condition (see[5]).

The theory uses the term “effective stress™ defined by

3 .
£= G GaGut"t¥) (12)
where the contravariant components of the stress deviator tensor ¢7 are given by the relation

£ = 19 =3 G'Gp™ (13)

in which

W=(&)st (14

is Euler’s stress tensor. The Mises yield condition demands that *‘f” is equal to the function «,
defined as either the maximum value of “f” over the stress history, or the initial yield stress,
whichever is greater. Then[9]:

As§ = C¥Ay,, (152)
2
CiF" = AGIG” + p(G¥G® + G*G") - sfG* — sPG" + ¢ (37“) gilgor (15b)
_ vE
A== (150
E
) (15d)
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%=“(3M+_Ll ) if f = cand >0 (15¢)
E, E
(loading in the plastic region)
=0 if f=randf=0 (15f)
(unloading in the plastic region)
orf<k
(elastic region).

The quantities E (elastic modulus) and E, (plastic modulus) are determined from a tangent of a
true stress vs logarithmic axial strain curve in uniaxial tension, while » is Poisson’s ratio. The
Ramberg-Osgood representation for uniaxial tensile true stress-logarithmic strain curve is used
here. For this representation

i3

b-pein()”

w

where o, and n are material constants,

The elastic-plastic law (15a) has two branches, elastic and plastic, and this complicates the
numerical procedure. For a given load increment some nodes remain elastic or plastic, while
others pass from elastic to plastic region or vice versa. This is tested in each iteration. If
unloading is detected in at least one node, the matrix of the system (11a),(b) should be reformed,
using elastic stress-strain matrices at such node(s) and the iteration should be repeated. For
convenience we simplified the procedure and repeated only the first iteration, while in the

- subsequent iterations the elastic law was taken for the unloaded nodes. When the solution is
obtained, the stress state is tested and used for the determination of starting constitutive
matrices for the computation of the matrix of the system (11) in the next load increment. When
certain nodes become plastic, the iteration is not repeated; the calculations of stresses however
take into account that some stresses develop in elastic region and some in plastic.

3. RESULTS AND DISCUSSION

Formulation of the necking problem

The local contraction in a real bar appears because of imperfect material and geometrical
structure. This structure is usually not known, so it is impossible to predict the location of the
contraction. In numerical analyses the problem is therefore simplified and certain simple
distributions of imperfections are chosen. Previous numerical analyses took a materially
homogenous but geometrically imperfect bar with free ends [5-7] or materially and
geometrically perfect bar with clamped ends[6]. In the present analysis the latter
possibility was used because of computational advantages. In this case the contraction of the
bar is inhomogenous from the very beginning of loading, while the neck is located in the middle
of the bar.

The bar is assumed to be axisymmetric with respect to z-axis and symmetric with respect to
the middle plane z = 0. This suggests the use of cylindrical coordinates 7, ¢, 2. Only one fourth
of the specimen needs to be dealt with.

Geometric, material and loading characteristics and the finite difference net employed are
shown in Fig. 1. The initial half-length to initial bar radius ratio is L/R = 2. The strain-hardening
exponent in Ramberg-Osgood law is n =8, the ratio o./E is 0.0072 and Poisson’s ratio is
v = 1/3. The finite difference net has 91 nodes.

The bar was subjected to the prescribed uniform axial displacement U at the bar ends. U
rose in small increments (as given in Fig. 1) and at each stage of the displacement the complete
analysis was carried out. The elongation was interrupted at U = 0.37525 L, when the procedure
began to diverge. The results are presented as far as U/L =0.35 (or equivalently S/S, = 0.33)
where, to our feeling, the accuracy is still satisfactory.
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(a) Geometry: L/R = 2.

(b) Material: Ramberg-Osgood law; E = 210 000 ; ¥= 1/3 ;
n«8; € =0,0072E.

(¢) Loading: Boundary displacement increments:

% = 0,000 ~ 0,212 (AU = 0,002 L)
0,212 ~ 0,268 (AU = 0,001 L)
0,268 - 0,37525 (AU = 0,00075 L)

(d) Number of nodes: 91.

]
R
z
_ }<___,
R
u,=0
u,=U

ﬁ:p::o
L=2R b> L=2R

v

Fig. 1. Geometric, material and loading characteristics of cylindrical bar. Finite difference net.

Results and discussion

Figure 2(a) shows axial force (P) vs area reduction (S/So) curves for a perfect, elastic-
plastic bar (curve 1), where the local contraction never appears, and for the here analysed bar
(curve 2). Axial force vs engineering axial strain (U/L) curves are shown in Fig. 2(b). Note the
different position of the perfect bar curves with respect to the curves of a necked bar in both
figures.

When the axial force decreases, the effective stress near the ends begins to decrease and
plastic unloading starts. This implies that in the unloaded zone the area contraction stops, while
the cross section at the neck contracts even faster. For this reason the axial force decreases
further, causing larger unloaded zones at the ends and localizing the plastic deformations more
to the neck. This is shown in Fig. 3 where spreading of plastic loading and unloading zones is
plotted in the undeformed bar. The nodes in the plastic unloading zone in this figure can be
considered as elastic, yet with a new, higher yield stress.

The global shapes of the necked bar at three different deformation stages are shown in Fig.
4(a)-{(c). The deformed (or “spatial”) pictures of the originally square net give a good insight
into the local deformations.

The distributions of physical components of Lagrangian strains at various deformation
stages are given in Fig. 5(a), while physical components of stresses are given in Fig. 5(b).
Strains and stresses decrease smoothly from the axis of symmetry to the surface. Observe the
agreement between the stress distributions of the present analysis and those resulting from the
Bridgman’s formulae, in which the curvature radii from this analysis are put. The distributions
of the circumferential stress component show increasing compression on the surface until
S/So = 0.66, after which this surface component decreases and becomes tensile at S/S, = 0.43.
The phenomenon of increasing and decreasing of surface o, stress agrees with experiments of
Parker et al.[2] and with computations of Norris et al.[7]. The transition to tension has been
displayed also by Parker et al.

Figure 6 shows the curve of the normal longitudinal physical stress component in the central
point of the bar vs area reduction (S/S;). Note that the curve starts to decrease at S/S, = 0.46.



136 MIRAN SAJE

1.0 T
9t
P 8
Pmnx 7 (2)
.6
5 {1
4
.3
2 P
g} .
0 Ll e X i i 1
10 8 8 7 b6 5 4 3
S
S
(a)
10
ot {n
£ 8
Pax oI
ma S 2)
6}
5H
af
P
3
2
K
0 1 L i L L i
] 05 1 15 2 25 3 35

ric

(®)

Fig. 2. (a) Axial force (P) vs area reduction (S/So); (b) Axial force (P) vs engineering axial strain (U/L).
(1) Ideal bar, (2) present bar.

4. COMPARISONS WITH PREVIOUS SOLUTIONS
Bridgman as well as Davidenkov and Spiridonova pay attention to the minimum section
only. They both assume that the stress components o, and o, are equal; they derive the r-th

component of the equilibrium equation in terms of principal stresses (o, = o,, 0;). They both
reach the same result

do;

. 1. \_
V: ar +p(¢r, 0,)=0 amn

whereas for p(r), the curvature radius of the trajectory of the principal stress o, at “‘r”, they
propose different formulae. Bridgman suggests the expression

et

r
a

(18)
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Fig. 3. Spreading of plastic loading and plastic unloading zones.

which results from the assumption that the trajectories are circles. Here a means radius of
minimum bar section and R radius of curvature of contour at minimum section. Davidenkov
and Spiridonova, with some experimental evidence, take

P="r" (19)

With (18) or (19) and Mises yield condition
o, — o, = constant,

the integration of (17) is simple, giving the known results. For ¢, = g, and a non-hardening
material they would be correct if p were correct. The comparison of (18), (19) and p, obtained
by the present analysis at S/S, = 0.43, shows agreement with Bridgman’s proposal, but not with
that of Davidenkov and Spiridonova. The stress distributions of the present method are
therefore compared only with Bridgman’s results, in which we put numerically obtained
curvature and neck radii.
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Fig. 4. Shapes of the necked bar at three stages of deformation: (a) S/So = 0.56; (b) S/So=0.43; (c)} S/So=
0.33.



S
=—=0.69
So
10
(y*=0625) g
8r (zz)
2 ij 7t
max
722 6F
5 __E__.—‘——__‘__
0
RS
-2+ {rr’
-3 (99)
-4+
_A5 1
0 5 ¢ 10
Ro
S
—=0.69
So
10
(e -zogl & |
621

o= RN wruvog
T T T

Necking of a cylindrical bar in tension 739
056 0.43 0.33
10 10 10
(127 (264) (44|
| (22)
22) @) i
sk _ | [ S Bk |
0 0 — 0 __1
{rr (rr
rr) | L) {99)
L o L
i
-5 - - -
0 5 10 % 5 0 % 5 10
X L x
Ro Ro Ro
(a)
0.56 0.43 0.33
’ _B)
0AENB) g ] D —_ p
@esaf gl | (3836)| B z (3650 ~3° e
g WO N \
T N W (1)
F F
Sk 5t18)
LB~ ()
[®) :\
22 =Bl o
ol " 0 fre
qL L -] .
0 I 0 5 D
R R

(b)

Fig. 5. (a) Distribution of physical components of Lagrangian strains at the neck (z = 0); (b) Distribution
of physical components of stresses at the neck (z = 0). ox ~ hydrostatic stress.
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Fig. 6. Longitudinal stress component ¢7” in the central point of the bar vs area reduction (§/Sq).
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Fig. 7. Distributions of stresses by Chen{5], Needleman [6] and Norris et al.[7] compared with the distributions
by the present analysis at S/S,=0.59.

The numerical results show that ¢, and o,, are equal only once during the whole
deformation (at /S =0.43, Fig. 5b), and that at this stage the stress distributions by both
methods coincide. As expected there is not such a good agreement at other stages.

Chen[5], Needleman[6] and Norris et al.[7] made calculations similar to those presented
here. They all formulated the problem in a different way and applied different numerical
procedures. Figure 7 shows the comparison of some of the published results for o,, stress at
8780 =0.59. The oscillating distribution given by Chen is not confirmed by the present solution.
The discrepancy has however been expected since his solution does not satisfy the boundary
condition o,, =0 at r =R, z =0, but not to such extent. It is however interesting that similar
oscillations of stresses are found by the present method if a coarser finite difference net is used
(3 x 6 instead of 6 x 12). That points to the numerical sensitivity of the problem. The effect of
shifting the maximum stress off the axis of the bar in Chen’s solution is incompatible with the
effect of the development of the sharp stress peak on the axis, obtained by Needleman.
Disregarding this peak, Needleman’s shape of stress distribution agrees in general with ours.
The shape given by Norris et al. is similar to the present one, except that the present curve lies
completely above their curve, which is due to different material characteristics, as discussed by
Norris et al.

The strain distributions are similar in shape in all cases and need not be compared here.

5. ADDITIONAL REMARKS

The following statements have not been noted in previous investigations:

(1) The distributions of the radial and the circumferential stress components in the narrowest
section are equal only at one stage during the process of necking. This stage will be called
“the critical stage”.

(2) At this stage Bridgman’s formulae give accurate results.

(3) The longitudinal normal stress component in the central point of the bar increases at first
until it reaches the maximum value at a certain deformation stage which occurs a little bit
earlier than the critical stage. After that it decreases.

(4) When the critical stage is reached, the radius of the curvature of the neck profile starts to
increase, while stress and strain concentration factors begin to decrease. This means that
the necked portion tends to elongate and to behave like a perfect bar. In a metal bar this
would not really happen since fracture would take place earlier. The present study does not
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consider fracture and therefore can not predict when a bar breaks. Nevertheless the results
have practical value since they are essential for any fracture study.
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APPENDIX

Finite difference schemes of eqn (11a)
Notation

“w on»

» partial derivative with respect to r;
“,;" partial derivative with respect to z;
u,, 4, r and z components of displacement vector;
h  net characteristic;
C" components of constitutive matrix:

As§ et c? o ¢c® ¢ Ay,
asgl _ | 2 2 AYer
As 6: C!I CJZ C!J CM A Yar
AsE cY ¢c* ¢® ¢ 2Ay,,

Ky, Ly, My, Ny  auxiliary symbols:

Ki=C"(1+ 4, P+ CY(0 + ity + CH1+ s Yy + C¥u, Y + 55
Kis=C*(1 4w, P+ CH(1+ Yo + C(+ 1y Yoy + COuy, P + 5T

K= C'(1+ uJuzy + CVut ity + CH(1+ e N+ ) + CH(L + s iy,

K33 = C*(1+ . Yz + C¥up gty + CO(L + iy X1+ 1,) + C¥(1 + 4, u,,
Ky =[C™(1+u,,} + C*u, Nr +u,)

Lu=Kun

Lis=C*(1 +u, P+ C¥(1+ w, up + CO1+ ity + CP () + 55
L= CH(1 + Ytz + C¥lutp it + CH(1+ 1, X1 4 0) + CH(1 + )y,
L3 = C*(1 4ty Yz + C¥up iy, + CO+ up X1+ 0:2) + C¥( + iy ),
Li=[CH1+u.,)+ C%u)r +u,)

M=K

Mu=Ly

M= C"u, P+ CU(1 + Yy + CU + )ity + CH( 4 0 4 57

Mz = C*uz, P+ CH(1 + )ty + CO1 + Ytz + L+ )+ 5§
My =[C"u,, + C*(1 +u..)Nr +u,)

Nu=Ks
Ni=Ly
N3 =M

N3 = CH*u., P+ C*(1 + u )z, + CO( + D, + C¥(4 + . P + 55
N = [C‘zuz.r + Cn(l +u)r +u,).
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r~th component:

@uG))
4L1 +
~(K. o+L. 3
15010 ()5 D5 o+ 3Kyg) 15"
4K 5 - -8(K11+L13)+;;![K1,r+ 4Ky, o+

1
=2n(€yy Dy, et )

+20(Kyy p¥1qy gt )

=y %51‘°22(r+“r)2‘dgl

4Ly -

K, z+L ~-(K
1371 -2n(Ry; Ly o+ 2K 5) y3+Tyy)
+
@)
4., ,+2h(K +
33 33,1
=(K4z+L. 1) i K53+L31
33773 + L35nz-N1 + 3 K35)
4x31-2h(x31ir+ I . 4K31+2h(K31ir+
+ LBl.z—Ml +F K31) + L31,z_M1 + 5 Kil)
4%, ,-2h(K,, .+ _
K35+Is1 357 3%, (K33+L51)
* L3307+ F53)
-4 {[szr(1+“r,r) * sgz“r,z],r + [sgr(l*“r,r) + s:zur.z],z *

1
T

[sgr(l+u

T,T o r,z

) + 8t%y ]- (r+ur) stf}

z~th component:

(oe)

D)
N
~(My 54811 UNpge2h(Myz o+ Myg+¥,
+ N + lM + N.)
4M11—2h§M11’r T (M, N ,) + uity +2m(H e
N A 2 1 3
* Nyt Fhn M) +4h=(My 4Ny o+ M) *NyyLet By M)

4Nyz-2h(Myy o+
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- 1 1 1
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1
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1
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